如下图,△ABC和△DEF均为钝角三角形,其中∠A。∠D为钝角。能否将每个三角形分成两个三角形,使△ABC分成
2024-07-02 来源:未知
若原来两个三角形已经是相似三角形,则必定可以。(如何画这就不用说了吧)
若原来不是相似三角形,则推理如下:
若原来三角形不相似,但又有且仅有一个角相等(这里假设这个相等的角就是钝角,你可以按这种方法推出若是其它角相等也无法达到题目要求)
假设能够实现,我们将两个三角形坦悔按如图分割(我才一级传不了图,只有麻烦你自己画了,从A画一条线段与BC相交让答正交点为M,从D点画一条线段与EF相交交点为N),由于原本不相似,故角B和角E必定不等,那么既然画出的三角形能相似,只有角B等于角END或者等于角EDN,当等于EDN时,角E只能等于角BAM(因为角EDN加上角E小于90度,故角END为钝角,若角E不等于BAM而是等于BMA,则BAM必定也为钝角,可以推知三角形AMC无法与三角形DNF达到相似),由于角AMC=角DNF=角B+角E,又由于角MAC=BAC-角BAM=BAC-角E,不等于角NDF(因为角NDF=EDF-角B=BAC-角B,角B和角E不相等),所以只有角MAC=角F,角C=角NDF才能使三角形AMC与三角形DNF相似举带,但是当角MAC=角F时,你发现角BAC=角E+角F,而从题上可以知道角BAC为钝角,而(角E+角F)却小于90度,角BAC不可能等于(角E+角F),所以假设错误。
同理你也可以推导出原来两个三角形中没有一个角相等时,也不能做到题目要求。
关键结论:除非原来两个三角形已经相似,否则不可能做到题目要求。
图在哪儿?